

LIVE: Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities

Scalable ISRU production/utilization capabilities including sustainable commodities* on the lunar & Mars surface

COMMERCIAL SCALE WATER, OXYGEN, METALS & COMMODITY PRODUCTION

- Lunar resources mapped at meter scale for commercial mining
- 10's of metric tons of commodities per year for initial goal commercial usage
- Scalable to 100's to 1000's metric tons per year

COMMODITIES FOR HABITATS & FOOD PRODUCTION

- Water, fertilizers, carbon dioxide, and other crop growth support
- Crop production habitats and processing systems
- Consumables for life support, EVAs, and crew rovers/habitats for growing human space activities

In Situ Derived Feedstock for Construction, Manufacturing, & Energy

- Initial goal of simple landing pads and protective structures
- 100's to 1000's metric tons of regolith-based feedstock for construction projects
- 10's to 100's metric tons of metals, plastics, and binders
- Elements and materials for multi-megawatts of energy generation and storage
- Recycle, repurpose, and reuse manufacturing and construction materials & waste

COMMODITIES FOR COMMERCIAL REUSABLE IN-SPACE AND SURFACE TRANSPORTATION AND DEPOTS

- 30 to 60 metric tons per lander mission
- 100's to 1000's metric tons per year of for Cis-lunar Space
- 100's metric tons per year for human Mars transportation

In Situ Resource Utilization (ISRU) Capability – 'Prospect to Product'

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create commodities* for robotic and human exploration and space commercialization

Destination Reconnaissance & Resource Assess

Assessment and mapping of physical, mineral, chemical, and water/volatile resources, terrain, geology, and environment

Resource Acquisition, Isolation, & Preparation

Atmosphere constituent collection, and soil/material collection via drilling, excavation, transfer, and/or manipulation before Processing

Resource Processing

Chemical, thermal, electrical, and or biological conversion of acquired resources and intermediate products into

- Mission Consumables
- Feedstock for Construction & Manufacturing

Water/Volatile Extraction

A subset of both Resource Acquisition and Processing focused on water and other volatiles that exist in extraterrestrial soils

- > ISRU is a capability involving multiple disciplines and elements to achieve final products
- > ISRU does not exist on its own. It must link to users/customers of ISRU products

ISRU Functional Breakdown And Flow Diagram

Destination Reconnaissance and Resource Assessment

- Site Imaging/Terrain Mapping
- Instruments for Resource Assessment
- Orbital Resource Evaluation
- Local Surface Resource Evaluation
- Resource/Terrain/Environment Data Fusion and Analyses

Resource Acquisition, Isolation, and Preparation

- Resource Excavation & Acquisition
- Resource Preparation before Processing
- Resource Transfer
- Resource Delivery from Mine Site and Removal

Resource Processing for Production of Mission Consumables

- Resource Storage and Feed To/From Processing Reactor
- Regolith Processing to Extract Oxygen
- Regolith Processing to Extract Water
- Carbon Dioxide Processing
- Water Processing
- Instrumentation to Characterize Processing Performance
- Product/Reactant Separation
- Contaminant Removal from Reagents/Products

Resource Processing for Production of Manufacturing and Construction Feedstock

- In Situ Excavation and Movement for Construction
- Resource Preparation for Construction Feedstock
- Material transfer
- Resource Processing to Extract Metals/Silicon
- Resource-Trash/Waste Gas Processing to Produce Methane/Plastics

Cross Cutting

- Planetary Simulants for Test & Verification
- Planetary Regolith/Environment Test Chambers

- Functional Breakdown and Flow Diagram used to understand:
 - Technology State of the Art and gaps
 - Connectivity Internally and with other disciplines
 - Influence of technologies on complete system and other functions
- ISRU functions have shared interest with Autonomous Excavation, Construction, & Outfitting (AECO)
 - Destination Reconnaissance
 - Resource Excavation & Delivery
 - Construction Feedstock Production

ISRU Must Operate as Part of A Larger Architecture

P = Provided to ISRU S = Supplied by ISRU Italic = Other Disciplines

- Architecture elements must be designed with ISRU product usage in mind from the start to maximize benefits
- Infrastructure capabilities and interdependencies must be established and evolve with ISRU product users and needs
 - Transition from Earth-supplied to ISRU-supplied

Power:

- · Generation, Storage, & Distribution (P)
- ISRU-derived electrical /thermal (S)

 Advanced Power Systems

Transportation to/from Site:

- · Delivery (P)
- Propellants & Depots (S)
 Advanced Propulsion
 Entry Descent and Landing

Communications & Navigation (P)

- To/From Site
- Local

Adv. Communication
& Navigation

Maintenance & Repair

Logistics Management

- Replacement parts (P)
- Feedstock (S)
 In Space/Surface
 Manufacturing

Living Quarters & Crew Support Services

- Water, O₂, H₂, Gases (S)
- Trash/waste (P)
- · Nutrients(S)

ISRU

Coordinated Mining Ops:

Areas for:

- i) Excavation
- ii) Processing
- iii) Tailings
- iv) Product Storage

In situ Instruments/Sensors Autonomous Systems Adv. Thermal Management

on:

Commodity Storage and Distribution:

- · Water & Cryogenic Fluids (CFM)
- Manufacturing & Construction Feedstock
 Cryogenic Fluid Management
 Autonomous Systems & Robotics
 Autonomous Excavation, Construction, & Outfitting

Feedstock for roads and structures (S)
 Autonomous Excavation, Construction, & Outfitting
 Autonomous Systems & Robotics

Lunar Resources and Commodities

- ISRU starts with the easiest resources to mine, requiring the minimum infrastructure, and providing immediate local usage
- The initial focus is on the lunar South Pole region (highland regolith and water/volatiles in shadowed regions)
 - ISRU will evolve to other locations, more specific minerals, more refined products, and delivery to other destinations

Plan to Achieve ISRU Outcome

Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface

Know Customer Needs (Type and Quantity of Commodities) & Develop Suppliers

- Work with Artemis elements, Moon/Mars Surface Architecture, and International Partners
- Work with Commodity users: Life Support & Food Production, Propulsion, Manufacturing, Construction
- Understand all processing system wastes (life support, ISRU, manufacturing, construction) as potential new resource
- ➤ Work with Terrestrial/Space Industry & Lunar Surface Innovation Consortium for Commercial Involvement & Opportunities

Perform Ground Development of Hardware and Systems until Ready for Lunar Flight

- Initiate a full range of ISRU & other discipline technologies across all TRLs (Technology Pipeline) to enable ISRU capabilities
- Perform gravity related research (short duration & ISS) on material handling, resource processing, and feedstock behavior
- Integrate lunar ISRU technologies and subsystems into systems for environmental and operational testing
- Develop lunar ISRU components, subsystems, and operations (including autonomy) applicable to Mars ISRU systems
- > Engage Industry, Academia, and the Public to lay the foundation for long-term lunar economic development

Reduce Risk of ISRU for Human Exploration & Space Commercialization thru CLPS Missions

- Understand lunar polar resources for technology development, site selection, mission planning (SMD and ESDMD)
- Obtain critical data (ex. regolith properties, validate feasibility of ISRU processes)
- Demonstrate critical ISRU technologies in lunar environment, especially those that interact with and process regolith

Perform End-to-End ISRU Production of Commodities & Demonstrate Usage

- Production at sufficient scale to eliminate risk of Full-scale system
- Initially use ISRU-derived commodity in non-mission critical application; examples include non-crewed ascent vehicle or hopper, extra fuel cell power, extra crew and EVA oxygen, construction demonstration, etc.
- > Involve industry in ISRU Demos and Pilot Plant to transition to Full-scale commercial operations

> ISRU must be demonstrated on the Moon before mission-critical applications are possible

 NASA STMD is breaking the 'Chicken & Egg' cycle of past ISRU development priority and architecture insertion issues by developing and flying ISRU demonstrations and capabilities to the Pilot Plant phase

Near-Term Envisioned Future:

Evolve from STMD Demonstrations to Sustained Lunar Surface Operations

STMD Leads *Individual* Technology Development and Flight Demonstrations

& Pilot Plant

ISRU Demo ISRU Pilot

ISRU Pilot Excavator

Precision Landing (SPLICE) & Plume Surface Interaction

Cryo Fluid Management TP & Flight Demos

Autonomous Robotics, LIDAR, and Navigation

In Situ Construction Demos

Vertical Solar Array Technology (VSAT)

Power Beaming

40 KWe Nuclear Reactor Demo

Regenerative Fuel Cell Power Demo

ESDMD/SOMD Evolve STMD Capabilities into Sustained Artemis Base Camp Infrastructure and Commercial Operations

Large Scale Power
Generation & Distribution

Complex, Multi-Element ISRU Operations

Cryogenic Consumables & Propellant Depots

Human and Robotic Maintenance & Repair

Offloading, Deployment, and Repurposing

Lander, Habitat, and Surface Vehicle Servicing

ISRU Path to Full Implementation & Commercialization

Full-scale implementation & Commercial Operations (see next chart)

- Dual Path that includes both Water Mining and Oxygen/Metal from Regolith
 - O₂/Metal Path supports Surface Construction as well
- Ground development of multiple critical technologies in both pathways underway to maximize success and industry involvement
- Resource assessment missions to obtain critical data on mineral and water/volatile resources have started
 - PRIME-1 validates critical VIPER instruments and lunar highland material properties (for subsequent ground development)
- Demonstrations are aimed at reducing the risk of Pilot Plant design and operation (and subsequent Full-scale implementation)
 - Pilot Plant demonstrates performance, end-to-end operations, and quality of product for implementation and use

NASA ISRU Capability State of the Art and Current Work

Resource Assessment – Flight Development (TRL 4-6)

- Multiple instruments under development by SMD and STMD for resource collection and assessment
- Instruments to be flown on CLPS missions PRIME-1 and VIPER for lunar ice characterization

Water Mining – Proof of Concept (TRL 2/3)

- 3 mining approaches and 6 water extraction technologies under development
- Challenges: Space Robotic, Break the Ice Lunar

Oxygen Extraction from Regolith – Engineering Breadboards/Field Test Units (TRL 4/5)

- Two Hydrogen Reduction systems built and tested at Pilot scale; terrestrial operations, non-flight mass/power, mare regolith, days/weeks operation (2008)
- Carbothermal Reduction system with solar concentrator built and tested as Sub-Pilot scale; terrestrial operations, mare regolith, non-flight mass/power, days/weeks operation (2010)
- Carbothermal & Hydrogen Plasma Oxygen extraction methods now reducing Highland simulants under laboratory conditions (TRL 3)

Oxygen/Metal Extraction from Regolith – Laboratory Proof of Concept

- Laboratory type/scale hardware: Molten Regolith Electrolysis (TRL 3/4); Ionic Liquid Reduction (TRL 2/3); International development of Molten Salt Electrolysis-ESA (TRL 3/4) and MRE-Israel (TRL 3/4)
- Bio-mining for oxygen/metal extraction (TRL 2/3)

Construction Feedstock (Low TRL: 2-4)

- Feedstock (blends of simulant and plastic) used in manufacturing & construction lab. demonstrations
- Mars concrete and soil/binders demonstrated: ACME & 3D Hab, Construction Centennial Challenge
- Size sorted lunar simulants being used for sintering construction tests
- Ilmenite beneficiation demonstrated on lunar-g aircraft
- 3D printer with simulant feedstock was tested on the ISS in the Additive manufacturing Facility
- Trash-to-Gas as start to conversion to fuels/plastics

Cross Cutting/System Level Resources

- 9 water electrolysis projects in 3 different types (PEM, SOE, Alkaline)
- NASA lunar simulant project initiated; Highland regolith simulant characterization & limited production
- External simulants available for purchase
- NASA Large dirty vacuum chamber almost ready at JSC; 2nd chamber at MSFC being modified

JSC 15' Dia. Dirty TVac

ISRU Capability Gaps to Achieve Initial Full-Scale Production*

*Estimates from Internal NASA and APL Lunar Surface Innovation Consortium Supply/Demand Workshop 9/17/2020

Resource Assessment (Lunar Water/Ice) Capability Gaps

- Surface features and geotechnical data on regolith outside and inside permanently shadowed craters (PSRs)
- Understanding of water and contaminants as a function of depth and areal distribution
- Understanding of subsurface water/volatile release with heating
- Resolution of hydrogen and subsurface ice at <10s m scale (or less) for economic assessment & mine planning (orbital/surface)
- Instrument for polar regolith sample heating and released volatile characterization (minimum loss during transfer/evaluation)

Water Mining Capability Gaps

- Feasibility and operation of downhole ice/water vaporization and collection in cold-trap under lunar PSR conditions
- Feasibility and operation icy regolith transfer (low loss) and processing in reactor under lunar PSR conditions; min. 15,000 kg/yr; 3 years nom.
- Water and other volatile capture and separation; contaminant removal
- Electrical power & Thermal energy in PSRs for ice mining/processing (10s of KWs) *Power System Gap*

Oxygen Extraction Capability Gaps

- Industrial-scale of regolith processing for oxygen (minimum of 10 mT O₂/yr; 3 years nom. with min./no maintenance)
- Regenerative oxygen & product gas clean-up (10,000 kg/yr)
- Measuring mineral properties/oxygen content before and after processing

Manufacturing & Construction Feedstock Capability Gaps

- Metal and metal alloy extraction from regolith: Post oxygen extraction or separate/multi-step refining
- Crushing, size sorting and mineral beneficiation of 100s mT per project for extraction and manufacturing/construction feedstock
- Production of 10s mT per project of plastic/binders and cement for manufacturing and construction

Regolith Excavation, Handing, & Manipulation Capability Gaps

- Long-life, regolith transfer (100s of mT) and low leakage regolith inlet/outlet valves for processing reactors (10s of thousands of cycles)
- Excavation and delivery of granular regolith (O₂/Metal) and icy regolith (Water Mining) Autonomous Excavation, Construction, & Outfitting (AECO)
- Extensive Traversibility (100s of km in sunlit and PSR locations and ingress/egress Autonomous & Robotic Systems Gap

Cross-Cutting/System Level Resource Gaps

- Gravity-related research (short duration & ISS) to better understand impact on material handling, resource processing, and feedstock behavior
- Long-duration (100s of days) and Industrial-scale (10s of mT) operations under lunar vacuum and at <100 K temperatures
- Sensors and autonomous process monitoring and operations
- Industrial-scale water electrolysis water electrolysis, clean-up, and quality measurement for electrolysis or drinking (10s of mT/yr)

ISRU Commodity Production Investment Status (1 of 2)

- Develop Critical Technologies for Lunar Oxygen Extraction
 - ☑ Close coordination with Autonomous Excavation, Construction, and Outfitting (AECO) on excavation and delivery
 - **☑** 6 different O₂ extraction technologies in development
 - ☑ 9 development projects for 3 different water electrolysis approaches (with Life Support and Regenerative Power)
 - ☐ Interface and internal technologies/functional areas require further investment
- Develop Critical Technologies for Lunar Resource Assessment and Water Extraction
 - Significant number of SMD and STMD instrument technologies for resource assessment down to 1 m.; University/Public Challenges
 - Need to consider technologies for deeper >3 m assessment for water/volatiles based on some water deposit theories
 - ☑ Close coordination with AECO on excavation in Permanently Shadowed Regions (PSRs); Break the Ice Lunar Challenge
 - □ 6 water mining development projects for 3 different approaches
 - 9 development projects for 3 different water electrolysis approaches (with Life Support and Regenerative Power)
 - ☐ Interface and internal technologies/functional areas require further investment
 - No dedicated robotic polar water/volatile resource assessment surface missions beyond VIPER currently in planning
 - No dedicated funded effort to develop resource maps for site selection
- Develop Critical Technologies for Manufacturing and Construction Feedstocks/Commodities
 - □ Technologies for raw metal/alloy extraction in work as part of O₂ extraction; work required to further separate and refine metals
 - ☐ Technologies for regolith size sorting, mineral beneficiation, and regolith manipulation in work
 - □ Development and evaluation feedstocks to support manufacturing and construction techniques
 - Limited plastic/binder production from in situ resources; synthetic biology technologies in work for bio-plastic and some commodity feedsocks
- Evaluate and Develop Integrated Systems for Extended Ground Testing; Tie to Other Discipline Plans
 - ☑ NASA and APL performed/performing ISRU system evaluations
 - ☐ Dedicated modeling, evaluation criteria, and Figures of Merit (FOMs) established
 - ☐ Approach/approval for NASA and/or Industry-led System development and testing
 - ☐ Facilities and simulants to support lunar environmental testing with regolith simulants
 - ☐ Facilities and approach for extended mission analog operation and evaluation ground testing

Green = Significant Funded Activities

Yellow = Partially Covered; More Required

Red = Limited/No Funded Activities

ISRU Commodity Production Investment Status (2 of 2)

- Develop/Fly Resource Assessment & ISRU Demonstrations Missions leading to Pilot Plant operations by 2030
 - ☑ Orbital missions, PRIME-1, & VIPER funded and under development for launch
 - ☐ Lunar Trailblazer launch date and mission data later than desired. Actual spacecraft ready for launch in 2022
 - No clear plan for polar water/volatile resource assessment leading to Base Camp site selection predicated on success of VIPER
 - ☐ At least one demonstration planned for each ISRU commodity path
- Involve Industry/Academia with Goal of Commercial Space Operations at Scale
 - 25, NIACs, SBIRs, BAAs, ACOs, & TPs led by industry underway for ISRU
 - 9 STTRs, NIACs, LuSTR, NSTRF, ESI/ECF led by Academia underway for ISRU
 - ☑ Lunar Surface Innovation Consortium ISRU Focus Group underway and active; Supply/Demand Workshop
 - ☑ Center for the Utilization of Biological Engineering in Space (CUBES)
 - NASA prize competitions and university challenges: BIG Idea, Moon-Mars Ice Prospecting, Break the Ice Lunar, Lunabotics, CO₂ Conversion Challenge, Space Robotics Challenge
 - □ Selection/Competition strategy for ISRU demonstrations and Pilot Plant in work for industry involvement and commercialization

Green = Significant Funded Activities

Yellow = Partially Covered; More Required

Red = Limited/No Funded Activities

ISRU Commodity Production Summary and Next Step Priorities

- Complete Development of Water/Oxygen Mining Paths and Close Technology Gaps
 - Continue oxygen extraction of Highland regolith
 - Continue water extraction/mining approaches in parallel until mission data allows for down-selection
 - Work with life support on oxygen and water cleanup technologies and requirements
- Expand Development of Metal/Aluminum Extraction & other Feedstock for Manufacturing & Construction
 - Continue and expand work on combined oxygen and metal extraction technologies;
 - Initiate work focused on metal extraction and processes leading to more pure/refined metals
 - Consider wider range of regolith options: Mare regolith, Pyroclastic Glasses, and KREEP
 - Continue and expand construction feedstock/commodity development with in-space manufacturing and construction
 - Evaluate synthetic biology technologies for bio-mining, bio-plastic, and some commodity feedstocks
- Coordinate Polar Resource Assessment with SMD and ESD/SOMD for Artemis Base Camp site selection
- Initiate Internal and Industry-led System-level integration of ISRU and infrastructure capabilities
 - Expand ISRU system engineering, modeling, integration, and testing to enable technology and system selections
 - Begin combining power, excavation, ISRU, storage & transfer, comm/nav, autonomy/avionics, maintenance/crew.
- Initiate solicitations with Industry to progress ISRU technologies to Demonstration & Pilot-scale flights
 - Pursue oxygen and metal extraction demonstrations; delay water mining demonstration until better knowledge is obtained
 - Provide feedstock technologies and capabilities to support construction demonstrations

Acronyms

- ACME Advanced Construction with Mobile Emplacement
- ACO Announcement of Collaborative Opportunity
- Adv. Advanced
- AECO Autonomous Excavation, Construction, & Outfitting
- Al Aluminum
- BAA Broad Agency Announcement
- BIG Idea Breakthrough, Innovation, and Gamechanging
- BRACES Bifurcated Reversible Alkaline Cell for Energy Storage
- Ca Calcium
- CFM Cryogenic Fluid Management
- C2H4 Molecular formula for ethylene
- CH4 Molecular formula for methane
- CH3OH Molecular formula for methanol
- CIF Center Innovation Fund
- CLPS Commercial Lunar Payload Services
- CO Molecular formula for carbon monoxide
- CO2 Molecular formula for carbon dioxide
- COPR Carbothermal Oxygen Production Reactor
- CY Calendar Year
- Demo Demonstration
- · Dia Diameter
- ECF Early Career Faculty
- ESI Early Stage Innovation
- EVA Extra Vehicular Activity
- FLEET Fundamental Regolith Properties, Handling, and
 Water Capture
- FY Fiscal Year
- G Gravity
- GRC Glenn Research Center
- H2 Molecular formula for hydrogen
- H2O Molecular formula for water

- H2S Molecular formula for hydrogen sulfide
- Hg Mercury
- ICICLE ISRU Collector of Ice in a Cold Lunar Environment
- IHOP ISRU-derived H2O Purification and H2-O2 Production
- IL Ionic Liquid
- ISRU In Situ Resource Utilization
- ISS International Space Station
- JPL Jet Propulsion Laboratory
- JSC Johnson Space Center
- K Kelvin temperature
- kg/yr Kilograms per year
- KPLO Korean Pathfinder Lunar Orbiter
- KREEP Potassium (K), Rare Earth Elements, Phosphorous
- KSC Kennedy Space Center
- KWe Kilowatt electric
- LADI Lunar Auger Dryer ISRU
- LCROSS Lunar Crater Observation and Sensing Satellite
- LIDAR Light Detection and Ranging
- LIRA Lunar In-situ Resource Analysis
- LightWAVE Light Water Analysis and Volatile

Extraction

- LP3 Lunar Propellant Production Plant
- LuSTR Lunar Surface Technology Research
- LSII Lunar Surface Innovation Initiative
- Lunar WETS Lunar Water Extraction Techniques and Systems
- M Meter
- Mat'l Material
- min. Minimum
- MMOST Moon to Mars Oxygen and Steel Technology
- MRE Molten Regolith Electrolysis

- MSFC Marshall Space Flight Center
- mT Metric Tonne
- NASA National Aeronautics and Space Administration
- NIAC NASA Innovation Advanced Concepts
- nom. Nominal
- NH3 Molecular formula for ammonia
- NSTRF NASA Space Technology Research Fellowship
- O2 Molecular formula for oxygen
- O2/yr oxygen per year
- OH Molecular formula for hydroxyl
- PEM Proton Exchange Membrane
- PILOT Precursor ISRU Lunar Oxygen Testbed
- PRIME Polar Resources Ice Mining Experiment
- PSR Permanently Shadowed Region
- SAA Space Act Agreement
- SBIR Small Business Innovation Research
- SO2 Molecular formula for sulfur dioxide
- SOE Solid Oxide Electrolysis
- SMD Science Mission Directorate
- SPLICE Safe and Precision Landing Integrated Capabilities Evolution
- STMD Space Technology Mission Directorate
- STTR Small business Technology Transfer
- Th Thorium
- TP Tipping Point
- TRL Technology Readiness Level
- TVac Thermal vacuum
- U Uranium
- VIPER Volatiles Investigating Polar Exploration Rover
- VSAT Vertical Solar Array Technology
- wt% Weigh percent